簧片在线观看,heyzo无码中文字幕人妻,天天想你在线播放免费观看,JAPAN4KTEEN体内射精

正在閱讀:

金融大模型“落地戰(zhàn)”,廠商如何跨越藩籬?

掃一掃下載界面新聞APP

金融大模型“落地戰(zhàn)”,廠商如何跨越藩籬?

越來(lái)越多的機(jī)構(gòu)擁抱合作互通,通過(guò)生態(tài)共建來(lái)實(shí)現(xiàn)共贏。

圖片來(lái)源:界面新聞 匡達(dá)

文|新經(jīng)濟(jì)觀察團(tuán)

2022年底ChatGPT引爆市場(chǎng)至今,大模型的風(fēng)潮已經(jīng)刮了一整年。

作為天然的數(shù)據(jù)密集型和科技驅(qū)動(dòng)型行業(yè),金融業(yè)已成為大模型最火爆的試驗(yàn)場(chǎng)之一,在全球首個(gè)金融大模型——彭博社的BloombergGPT發(fā)布后,相關(guān)大模型紛至沓來(lái)。

國(guó)內(nèi),從金融機(jī)構(gòu)到互聯(lián)網(wǎng)大廠,再到螞蟻集團(tuán)、新浪數(shù)科等金融科技公司,相繼押注自有金融大模型,在場(chǎng)景應(yīng)用、算法模型方面各展奇招,探索大模型在金融全鏈路的落地。

但當(dāng)越來(lái)越多的金融大模型被推至公眾面前,市場(chǎng)和廠商們的態(tài)度也從最初的狂熱追逐,迅速轉(zhuǎn)變?yōu)椤办铟取焙蟮睦硇运伎茧A段。

究其原因,是理想和現(xiàn)實(shí)之間的「藩籬」:金融行業(yè)的特殊性,決定了其雖是大模型落地的最佳場(chǎng)景之一,但由于對(duì)信息和數(shù)據(jù)的精度、合規(guī)等要求十分嚴(yán)苛,致使多數(shù)金融大模型僅停留在較初級(jí)的助手層面,未深度嵌入業(yè)務(wù)核心環(huán)節(jié)。

因此,在金融大模型的下半場(chǎng),機(jī)構(gòu)們的賽點(diǎn)已轉(zhuǎn)到降低“幻覺(jué)”上,即真正實(shí)現(xiàn)規(guī)模化落地應(yīng)用、與場(chǎng)景深度融合解決實(shí)際問(wèn)題、帶來(lái)產(chǎn)業(yè)價(jià)值躍遷。目前,參與者已自覺(jué)走向生態(tài)共建,來(lái)共同面對(duì)落地難題。

01 迸發(fā)

今年3月底,當(dāng)市場(chǎng)還處于對(duì)大模型涌現(xiàn)的狂歡中時(shí),彭博社的BloombergGPT橫空出世,將ChatGPT引爆的AI熱潮燒到了金融圈。隨后,摩根士丹利宣布采用GPT-4來(lái)管理其龐大的內(nèi)部知識(shí)庫(kù),又給沸騰的金融業(yè)添了一把火。

海外機(jī)構(gòu)的動(dòng)態(tài)似蝴蝶的翅膀,將熱浪迅速傳遞到大洋彼岸。

中信證券楊澤原研報(bào)彼時(shí)指出,海外以彭博、摩根士丹利為代表的金融巨頭積極發(fā)力大模型開(kāi)發(fā)與應(yīng)用,形成大模型+金融的強(qiáng)大示范效應(yīng)。預(yù)計(jì)伴隨國(guó)產(chǎn)大模型逐步突破,國(guó)內(nèi)金融行業(yè)生成式AI應(yīng)用有望逐步開(kāi)啟。

而在過(guò)去多年,伴隨金融數(shù)字化浪潮,國(guó)內(nèi)金融機(jī)構(gòu)已在獲客、風(fēng)控、投研、消保、客服等業(yè)務(wù)流程深度嵌入AI技術(shù)能力,構(gòu)建出智能化轉(zhuǎn)型的基本盤(pán)。但大模型基于強(qiáng)大的內(nèi)容生成、邏輯推理、快速迭代、乃至決策等能力,有望重構(gòu)金融機(jī)構(gòu)原有的基礎(chǔ)設(shè)施以及管理體系,大幅擴(kuò)充金融數(shù)智化變革的想象空間。

螞蟻集團(tuán)副總裁、金融大模型負(fù)責(zé)人王曉航就判斷,大模型正在為金融產(chǎn)業(yè)帶來(lái)體驗(yàn)變革,“金融業(yè)務(wù)鏈條上每一個(gè)關(guān)鍵職能,都值得用大模型技術(shù)重做一次。”

麥肯錫測(cè)算,未來(lái)金融類企業(yè)的整體收入里有3%至5%,可以是生成式AI(GenAI)所提供的。整體來(lái)看,GenAI用例對(duì)銀行業(yè)一線分銷,客戶運(yùn)營(yíng),技術(shù)以及法律、風(fēng)險(xiǎn)、合規(guī)和欺詐部門(mén)的價(jià)值潛力最大,占整體價(jià)值池的70%。

于是,國(guó)內(nèi)金融領(lǐng)域大模型次第涌現(xiàn),數(shù)據(jù)分析、風(fēng)控強(qiáng)化、智能客服、投資投顧等各大業(yè)務(wù)方向不一而足。

在這場(chǎng)聲勢(shì)浩大的AI盛宴中,參與者大致可分為三類:

一是金融機(jī)構(gòu)。工行、農(nóng)行、交行、招行、浙商銀行等多家銀行,都提出了大模型的相關(guān)部署;8月,消費(fèi)金融公司馬上消費(fèi)發(fā)布了首個(gè)零售金融大模型“天鏡”。

二是互聯(lián)網(wǎng)大廠。華為盤(pán)古大模型、百度千帆大模型、騰訊云行業(yè)大模型、訊飛星火大模型、360智腦大模型等通用大模型,均將金融作為重要發(fā)力點(diǎn)。

其中,12月14日,火山引擎攜手智譜AI,共同發(fā)布了高性能金融大模型,并全面開(kāi)啟測(cè)試。

此外,今年7月,騰訊云行業(yè)大模型公布金融風(fēng)控場(chǎng)景的解決方案,首次發(fā)布金融風(fēng)控大模型,融合了騰訊安全大量風(fēng)控建模專家經(jīng)驗(yàn),以及過(guò)去20多年沉淀的海量欺詐知識(shí)與多場(chǎng)景風(fēng)控模型能力。11月,騰訊云又正式發(fā)布金融行業(yè)大模型解決方案,助力每個(gè)金融機(jī)構(gòu)擁有自己的大模型。

三是金融科技公司。度小滿金融、奇富科技、星環(huán)科技、螞蟻集團(tuán)、新浪數(shù)科、樂(lè)信、恒生電子等公司,均推出了自有的金融大模型。

而進(jìn)一步從行業(yè)應(yīng)用落地情況來(lái)看,各大模型主要集中在內(nèi)容資訊、產(chǎn)品介紹、代碼、研報(bào)生成,虛擬客服交互,以及反欺詐等領(lǐng)域。

度小滿方面,大模型技術(shù)已經(jīng)應(yīng)用于各個(gè)業(yè)務(wù)場(chǎng)景,從營(yíng)銷、客服、風(fēng)控、辦公再到研發(fā),已經(jīng)初見(jiàn)成效。其中,在客服領(lǐng)域,大模型推動(dòng)服務(wù)效率提升了25%;在智能辦公領(lǐng)域,大模型目前的意圖識(shí)別準(zhǔn)確率已達(dá)到97%。

新浪數(shù)科積極推動(dòng)前沿技術(shù)在金融領(lǐng)域的應(yīng)用,并在智能客服、營(yíng)銷設(shè)計(jì)和研發(fā)提效等多個(gè)領(lǐng)域進(jìn)行了大模型應(yīng)用的實(shí)踐,取得了一定的成效。

其中,在智能客服方面,新浪數(shù)科利用通用大語(yǔ)言模型微調(diào)技術(shù),結(jié)合多年積累的金融客服領(lǐng)域知識(shí)庫(kù)數(shù)據(jù)和專業(yè)的客服經(jīng)驗(yàn),構(gòu)建了自己的智能客服助手。

通過(guò)意圖識(shí)別結(jié)合專用API方式,該助手能夠直接面向用戶,以24小時(shí)高效響應(yīng)用戶請(qǐng)求,并準(zhǔn)確理解用戶意圖、解析問(wèn)題,并通過(guò)代理能力檢索知識(shí)庫(kù)和獲取用戶業(yè)務(wù)信息,從而為用戶提供更個(gè)性化的服務(wù)。此外,智能客服助手還可以與人工客服協(xié)作,在總結(jié)歷史溝通內(nèi)容、提供相關(guān)建議等方面為人工客服提供支持。

在研發(fā)提效場(chǎng)景中,新浪數(shù)科研發(fā)團(tuán)隊(duì)在剝離敏感代碼后,引入了基于大模型的Copilot輔助工具,能夠有效地幫助研發(fā)人員在需求分析、架構(gòu)設(shè)計(jì)、代碼編寫(xiě)和代碼測(cè)試等開(kāi)發(fā)全流程中提升效率和質(zhì)量。

02 藩籬

然而,伴隨金融大模型次第推出,其在實(shí)際業(yè)務(wù)中的落地程度卻遠(yuǎn)低于年初的構(gòu)想。

恒生電子董事長(zhǎng)劉曙峰近日透露,超過(guò)70%的金融機(jī)構(gòu)處于大模型調(diào)研階段,8%是在立項(xiàng)階段,17%在測(cè)試階段。只有少量(不足10%)的客戶在實(shí)際落地應(yīng)用過(guò)程中。

而從市場(chǎng)來(lái)看,行業(yè)普遍上在生成類場(chǎng)景落地應(yīng)用較多,但涉及到?jīng)Q策的金融場(chǎng)景落地難度較大。也就是說(shuō),大模型距離深度融入金融業(yè)務(wù)各個(gè)端點(diǎn),釋放出應(yīng)有價(jià)值,進(jìn)而重塑金融行業(yè)生產(chǎn)關(guān)系,還有很長(zhǎng)的距離。

工行首席技術(shù)官呂仲濤就表示,大模型當(dāng)前階段并不成熟,仍存在科技倫理風(fēng)險(xiǎn)等問(wèn)題。因此,短期內(nèi)不建議直接對(duì)客使用。

究其原因,還是源于金融機(jī)構(gòu)的數(shù)據(jù)具備高敏性,涉及客戶隱私和金融安全,必須處于強(qiáng)監(jiān)管之下,對(duì)安全性、穩(wěn)定性、合規(guī)性、準(zhǔn)確性、可靠性等指標(biāo)的要求更為精細(xì)苛刻,也對(duì)廠商們的數(shù)據(jù)儲(chǔ)備和分析能力、合規(guī)合法、資金實(shí)力等提出了更多挑戰(zhàn)。

馬上消費(fèi)首席信息官蔣寧認(rèn)為,生成大模型,最大的困難是滿腹經(jīng)綸,回答錯(cuò)了可以不承擔(dān)風(fēng)險(xiǎn),但金融大模型最主要的模型是判別性,需要做交易決策,1%的錯(cuò)都會(huì)造成客戶的損失,這就是金融大模型和傳統(tǒng)大模型最大的區(qū)別。

王曉航表示,“盡管大模型的理解和生成能力強(qiáng)大,但遇到專業(yè)嚴(yán)謹(jǐn)行業(yè)時(shí)仍面臨諸多挑戰(zhàn)。強(qiáng)監(jiān)管的金融行業(yè)對(duì)大模型的可靠性要求也極高,除了要解決大模型的幻覺(jué),還要注重大模型在金融合規(guī)性、行業(yè)價(jià)值主張方面的訓(xùn)練。”

而長(zhǎng)期以來(lái),金融機(jī)構(gòu)的數(shù)據(jù)普遍處于孤島、“煙囪”式的割裂狀態(tài),流通性不高。因此,多數(shù)金融機(jī)構(gòu)在進(jìn)行大模型部署時(shí),傾向于選擇在安全保密狀態(tài)下,在私有云內(nèi)進(jìn)行訓(xùn)練,以滿足嚴(yán)格的數(shù)據(jù)安全和合規(guī)性要求。

因此,在推動(dòng)大模型落地過(guò)程中,機(jī)構(gòu)們往往面臨算力成本高、數(shù)據(jù)安全存在隱憂等多項(xiàng)痛點(diǎn)。具體來(lái)說(shuō),各類型參與者的技術(shù)能力參差,還需要開(kāi)展海量的數(shù)據(jù)治理、數(shù)據(jù)清洗等工作;各機(jī)構(gòu)單打獨(dú)斗式的私有云訓(xùn)練也造成算力浪費(fèi),各種成本高昂,中小金融機(jī)構(gòu)無(wú)法承受。

國(guó)盛證券曾估算,GPT-3訓(xùn)練一次的成本約為140萬(wàn)美元,對(duì)于一些更大的LLM模型,訓(xùn)練成本介于200萬(wàn)美元至1200萬(wàn)美元之間。

03 共建

面對(duì)金融大模型的落地困境,業(yè)內(nèi)明顯的趨勢(shì)是,越來(lái)越多的機(jī)構(gòu)擁抱合作互通,通過(guò)生態(tài)共建來(lái)實(shí)現(xiàn)共贏。

證監(jiān)會(huì)科技監(jiān)管局局長(zhǎng)姚前就曾刊文指出,大模型需要巨大的算力支持和嚴(yán)格的數(shù)據(jù)治理,普通的機(jī)構(gòu)和應(yīng)用部門(mén)往往難以支撐大模型的運(yùn)行以及迭代升級(jí)工作。為此,需要建立一個(gè)各類模型健康交互和協(xié)同進(jìn)化的生態(tài),以保證大模型相關(guān)人工智能產(chǎn)業(yè)可以在各個(gè)應(yīng)用領(lǐng)域成功落地。

我們也看到市場(chǎng)上金融大模型的各類參與者,通過(guò)加強(qiáng)合作共同探索大模型的成功落地。

“模型”之戰(zhàn),標(biāo)準(zhǔn)先行,騰訊云就積極牽頭制訂標(biāo)準(zhǔn)規(guī)范。早在7月份,其與中國(guó)信通院共同啟動(dòng)了行業(yè)大模型標(biāo)準(zhǔn)聯(lián)合推進(jìn)計(jì)劃,聯(lián)合牽頭中國(guó)首個(gè)金融行業(yè)大模型標(biāo)準(zhǔn)的編制工作。

11月30日,IEEE金融風(fēng)控大模型標(biāo)準(zhǔn)啟動(dòng)會(huì)召開(kāi)。而該標(biāo)準(zhǔn)是由騰訊主導(dǎo)發(fā)起,是全球范圍內(nèi)首個(gè)金融風(fēng)險(xiǎn)控制領(lǐng)域的大模型國(guó)際標(biāo)準(zhǔn)。會(huì)議在國(guó)際權(quán)威標(biāo)準(zhǔn)組織IEEE指導(dǎo)下舉行,中國(guó)信通院等學(xué)術(shù)機(jī)構(gòu),以及微眾銀行、馬上消金、度小滿、中原消金等機(jī)構(gòu)出席,聯(lián)合參與標(biāo)準(zhǔn)制定。

此外,金融機(jī)構(gòu)與頭部大模型廠商的“強(qiáng)強(qiáng)聯(lián)合”也在加速。

8月,交通銀行與華為、騰訊云、科大訊飛宣布共建3個(gè)聯(lián)合創(chuàng)新實(shí)驗(yàn)室;9月,浙商銀行與華為簽署深化戰(zhàn)略合作協(xié)議,將在綜合金融服務(wù)、AIGC場(chǎng)景應(yīng)用等方面深入合作,實(shí)現(xiàn)資源共享、優(yōu)勢(shì)互補(bǔ)、互利共贏的新格局;11月,騰訊云發(fā)布金融行業(yè)大模型解決方案,首批已有中國(guó)銀聯(lián)及11家合作伙伴宣布參與騰訊金融大模型的生態(tài)共建。

對(duì)大部分中小金融機(jī)構(gòu)們以及金融科技公司來(lái)說(shuō),更理想的路徑是,引入第三方廠商領(lǐng)先的基礎(chǔ)大模型,在自身樣本基礎(chǔ)上微調(diào),構(gòu)建出自己專業(yè)的大模型,快速賦能業(yè)務(wù)流程,力爭(zhēng)在這場(chǎng)模型之戰(zhàn)中實(shí)現(xiàn)彎道超車。

度小滿CTO許冬亮認(rèn)為,行業(yè)大模型將幫助積極擁抱大模型的中小金融機(jī)構(gòu),縮小與頭部機(jī)構(gòu)的技術(shù)差距,“大家重新站在同一起跑線上,這是中小機(jī)構(gòu)跨越‘?dāng)?shù)字鴻溝’和‘智能化鴻溝’的機(jī)遇”。

騰訊云方面的數(shù)據(jù)顯示,東風(fēng)日產(chǎn)融資租賃借助騰訊云的風(fēng)控大模型,在只有較少樣本的情況下就完成了定制化的風(fēng)控建模,建模時(shí)間節(jié)省了70%,讓最底層的風(fēng)控模型上具備了堅(jiān)實(shí)的風(fēng)控免疫力,支持金融業(yè)務(wù)開(kāi)展。

新浪數(shù)科方面,也在積極探索利用通用模型結(jié)合金融領(lǐng)域代碼庫(kù)來(lái)私有化部署的代碼輔助工具,以進(jìn)一步提升性能和信息安全。

Gartner最新發(fā)布的《2024年10大戰(zhàn)略技術(shù)趨勢(shì)》預(yù)測(cè):到 2026年超過(guò)80%的企業(yè)將使用生成式人工智能的API或模型,或在生產(chǎn)環(huán)境中部署支持生成式人工智能的應(yīng)用,而在2023年初這一比例不到5%。

相信在不久的將來(lái),伴隨金融大模型參與者的共同努力和國(guó)家政策扶持,大模型落地的“藩籬”將被跨越,在多個(gè)核心業(yè)務(wù)端落地開(kāi)花,并釋放指數(shù)級(jí)生產(chǎn)潛力,全面重構(gòu)金融商業(yè)模式。

本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人。

評(píng)論

暫無(wú)評(píng)論哦,快來(lái)評(píng)價(jià)一下吧!

下載界面新聞

微信公眾號(hào)

微博

金融大模型“落地戰(zhàn)”,廠商如何跨越藩籬?

越來(lái)越多的機(jī)構(gòu)擁抱合作互通,通過(guò)生態(tài)共建來(lái)實(shí)現(xiàn)共贏。

圖片來(lái)源:界面新聞 匡達(dá)

文|新經(jīng)濟(jì)觀察團(tuán)

2022年底ChatGPT引爆市場(chǎng)至今,大模型的風(fēng)潮已經(jīng)刮了一整年。

作為天然的數(shù)據(jù)密集型和科技驅(qū)動(dòng)型行業(yè),金融業(yè)已成為大模型最火爆的試驗(yàn)場(chǎng)之一,在全球首個(gè)金融大模型——彭博社的BloombergGPT發(fā)布后,相關(guān)大模型紛至沓來(lái)。

國(guó)內(nèi),從金融機(jī)構(gòu)到互聯(lián)網(wǎng)大廠,再到螞蟻集團(tuán)、新浪數(shù)科等金融科技公司,相繼押注自有金融大模型,在場(chǎng)景應(yīng)用、算法模型方面各展奇招,探索大模型在金融全鏈路的落地。

但當(dāng)越來(lái)越多的金融大模型被推至公眾面前,市場(chǎng)和廠商們的態(tài)度也從最初的狂熱追逐,迅速轉(zhuǎn)變?yōu)椤办铟取焙蟮睦硇运伎茧A段。

究其原因,是理想和現(xiàn)實(shí)之間的「藩籬」:金融行業(yè)的特殊性,決定了其雖是大模型落地的最佳場(chǎng)景之一,但由于對(duì)信息和數(shù)據(jù)的精度、合規(guī)等要求十分嚴(yán)苛,致使多數(shù)金融大模型僅停留在較初級(jí)的助手層面,未深度嵌入業(yè)務(wù)核心環(huán)節(jié)。

因此,在金融大模型的下半場(chǎng),機(jī)構(gòu)們的賽點(diǎn)已轉(zhuǎn)到降低“幻覺(jué)”上,即真正實(shí)現(xiàn)規(guī)模化落地應(yīng)用、與場(chǎng)景深度融合解決實(shí)際問(wèn)題、帶來(lái)產(chǎn)業(yè)價(jià)值躍遷。目前,參與者已自覺(jué)走向生態(tài)共建,來(lái)共同面對(duì)落地難題。

01 迸發(fā)

今年3月底,當(dāng)市場(chǎng)還處于對(duì)大模型涌現(xiàn)的狂歡中時(shí),彭博社的BloombergGPT橫空出世,將ChatGPT引爆的AI熱潮燒到了金融圈。隨后,摩根士丹利宣布采用GPT-4來(lái)管理其龐大的內(nèi)部知識(shí)庫(kù),又給沸騰的金融業(yè)添了一把火。

海外機(jī)構(gòu)的動(dòng)態(tài)似蝴蝶的翅膀,將熱浪迅速傳遞到大洋彼岸。

中信證券楊澤原研報(bào)彼時(shí)指出,海外以彭博、摩根士丹利為代表的金融巨頭積極發(fā)力大模型開(kāi)發(fā)與應(yīng)用,形成大模型+金融的強(qiáng)大示范效應(yīng)。預(yù)計(jì)伴隨國(guó)產(chǎn)大模型逐步突破,國(guó)內(nèi)金融行業(yè)生成式AI應(yīng)用有望逐步開(kāi)啟。

而在過(guò)去多年,伴隨金融數(shù)字化浪潮,國(guó)內(nèi)金融機(jī)構(gòu)已在獲客、風(fēng)控、投研、消保、客服等業(yè)務(wù)流程深度嵌入AI技術(shù)能力,構(gòu)建出智能化轉(zhuǎn)型的基本盤(pán)。但大模型基于強(qiáng)大的內(nèi)容生成、邏輯推理、快速迭代、乃至決策等能力,有望重構(gòu)金融機(jī)構(gòu)原有的基礎(chǔ)設(shè)施以及管理體系,大幅擴(kuò)充金融數(shù)智化變革的想象空間。

螞蟻集團(tuán)副總裁、金融大模型負(fù)責(zé)人王曉航就判斷,大模型正在為金融產(chǎn)業(yè)帶來(lái)體驗(yàn)變革,“金融業(yè)務(wù)鏈條上每一個(gè)關(guān)鍵職能,都值得用大模型技術(shù)重做一次。”

麥肯錫測(cè)算,未來(lái)金融類企業(yè)的整體收入里有3%至5%,可以是生成式AI(GenAI)所提供的。整體來(lái)看,GenAI用例對(duì)銀行業(yè)一線分銷,客戶運(yùn)營(yíng),技術(shù)以及法律、風(fēng)險(xiǎn)、合規(guī)和欺詐部門(mén)的價(jià)值潛力最大,占整體價(jià)值池的70%。

于是,國(guó)內(nèi)金融領(lǐng)域大模型次第涌現(xiàn),數(shù)據(jù)分析、風(fēng)控強(qiáng)化、智能客服、投資投顧等各大業(yè)務(wù)方向不一而足。

在這場(chǎng)聲勢(shì)浩大的AI盛宴中,參與者大致可分為三類:

一是金融機(jī)構(gòu)。工行、農(nóng)行、交行、招行、浙商銀行等多家銀行,都提出了大模型的相關(guān)部署;8月,消費(fèi)金融公司馬上消費(fèi)發(fā)布了首個(gè)零售金融大模型“天鏡”。

二是互聯(lián)網(wǎng)大廠。華為盤(pán)古大模型、百度千帆大模型、騰訊云行業(yè)大模型、訊飛星火大模型、360智腦大模型等通用大模型,均將金融作為重要發(fā)力點(diǎn)。

其中,12月14日,火山引擎攜手智譜AI,共同發(fā)布了高性能金融大模型,并全面開(kāi)啟測(cè)試。

此外,今年7月,騰訊云行業(yè)大模型公布金融風(fēng)控場(chǎng)景的解決方案,首次發(fā)布金融風(fēng)控大模型,融合了騰訊安全大量風(fēng)控建模專家經(jīng)驗(yàn),以及過(guò)去20多年沉淀的海量欺詐知識(shí)與多場(chǎng)景風(fēng)控模型能力。11月,騰訊云又正式發(fā)布金融行業(yè)大模型解決方案,助力每個(gè)金融機(jī)構(gòu)擁有自己的大模型。

三是金融科技公司。度小滿金融、奇富科技、星環(huán)科技、螞蟻集團(tuán)、新浪數(shù)科、樂(lè)信、恒生電子等公司,均推出了自有的金融大模型。

而進(jìn)一步從行業(yè)應(yīng)用落地情況來(lái)看,各大模型主要集中在內(nèi)容資訊、產(chǎn)品介紹、代碼、研報(bào)生成,虛擬客服交互,以及反欺詐等領(lǐng)域。

度小滿方面,大模型技術(shù)已經(jīng)應(yīng)用于各個(gè)業(yè)務(wù)場(chǎng)景,從營(yíng)銷、客服、風(fēng)控、辦公再到研發(fā),已經(jīng)初見(jiàn)成效。其中,在客服領(lǐng)域,大模型推動(dòng)服務(wù)效率提升了25%;在智能辦公領(lǐng)域,大模型目前的意圖識(shí)別準(zhǔn)確率已達(dá)到97%。

新浪數(shù)科積極推動(dòng)前沿技術(shù)在金融領(lǐng)域的應(yīng)用,并在智能客服、營(yíng)銷設(shè)計(jì)和研發(fā)提效等多個(gè)領(lǐng)域進(jìn)行了大模型應(yīng)用的實(shí)踐,取得了一定的成效。

其中,在智能客服方面,新浪數(shù)科利用通用大語(yǔ)言模型微調(diào)技術(shù),結(jié)合多年積累的金融客服領(lǐng)域知識(shí)庫(kù)數(shù)據(jù)和專業(yè)的客服經(jīng)驗(yàn),構(gòu)建了自己的智能客服助手。

通過(guò)意圖識(shí)別結(jié)合專用API方式,該助手能夠直接面向用戶,以24小時(shí)高效響應(yīng)用戶請(qǐng)求,并準(zhǔn)確理解用戶意圖、解析問(wèn)題,并通過(guò)代理能力檢索知識(shí)庫(kù)和獲取用戶業(yè)務(wù)信息,從而為用戶提供更個(gè)性化的服務(wù)。此外,智能客服助手還可以與人工客服協(xié)作,在總結(jié)歷史溝通內(nèi)容、提供相關(guān)建議等方面為人工客服提供支持。

在研發(fā)提效場(chǎng)景中,新浪數(shù)科研發(fā)團(tuán)隊(duì)在剝離敏感代碼后,引入了基于大模型的Copilot輔助工具,能夠有效地幫助研發(fā)人員在需求分析、架構(gòu)設(shè)計(jì)、代碼編寫(xiě)和代碼測(cè)試等開(kāi)發(fā)全流程中提升效率和質(zhì)量。

02 藩籬

然而,伴隨金融大模型次第推出,其在實(shí)際業(yè)務(wù)中的落地程度卻遠(yuǎn)低于年初的構(gòu)想。

恒生電子董事長(zhǎng)劉曙峰近日透露,超過(guò)70%的金融機(jī)構(gòu)處于大模型調(diào)研階段,8%是在立項(xiàng)階段,17%在測(cè)試階段。只有少量(不足10%)的客戶在實(shí)際落地應(yīng)用過(guò)程中。

而從市場(chǎng)來(lái)看,行業(yè)普遍上在生成類場(chǎng)景落地應(yīng)用較多,但涉及到?jīng)Q策的金融場(chǎng)景落地難度較大。也就是說(shuō),大模型距離深度融入金融業(yè)務(wù)各個(gè)端點(diǎn),釋放出應(yīng)有價(jià)值,進(jìn)而重塑金融行業(yè)生產(chǎn)關(guān)系,還有很長(zhǎng)的距離。

工行首席技術(shù)官呂仲濤就表示,大模型當(dāng)前階段并不成熟,仍存在科技倫理風(fēng)險(xiǎn)等問(wèn)題。因此,短期內(nèi)不建議直接對(duì)客使用。

究其原因,還是源于金融機(jī)構(gòu)的數(shù)據(jù)具備高敏性,涉及客戶隱私和金融安全,必須處于強(qiáng)監(jiān)管之下,對(duì)安全性、穩(wěn)定性、合規(guī)性、準(zhǔn)確性、可靠性等指標(biāo)的要求更為精細(xì)苛刻,也對(duì)廠商們的數(shù)據(jù)儲(chǔ)備和分析能力、合規(guī)合法、資金實(shí)力等提出了更多挑戰(zhàn)。

馬上消費(fèi)首席信息官蔣寧認(rèn)為,生成大模型,最大的困難是滿腹經(jīng)綸,回答錯(cuò)了可以不承擔(dān)風(fēng)險(xiǎn),但金融大模型最主要的模型是判別性,需要做交易決策,1%的錯(cuò)都會(huì)造成客戶的損失,這就是金融大模型和傳統(tǒng)大模型最大的區(qū)別。

王曉航表示,“盡管大模型的理解和生成能力強(qiáng)大,但遇到專業(yè)嚴(yán)謹(jǐn)行業(yè)時(shí)仍面臨諸多挑戰(zhàn)。強(qiáng)監(jiān)管的金融行業(yè)對(duì)大模型的可靠性要求也極高,除了要解決大模型的幻覺(jué),還要注重大模型在金融合規(guī)性、行業(yè)價(jià)值主張方面的訓(xùn)練。”

而長(zhǎng)期以來(lái),金融機(jī)構(gòu)的數(shù)據(jù)普遍處于孤島、“煙囪”式的割裂狀態(tài),流通性不高。因此,多數(shù)金融機(jī)構(gòu)在進(jìn)行大模型部署時(shí),傾向于選擇在安全保密狀態(tài)下,在私有云內(nèi)進(jìn)行訓(xùn)練,以滿足嚴(yán)格的數(shù)據(jù)安全和合規(guī)性要求。

因此,在推動(dòng)大模型落地過(guò)程中,機(jī)構(gòu)們往往面臨算力成本高、數(shù)據(jù)安全存在隱憂等多項(xiàng)痛點(diǎn)。具體來(lái)說(shuō),各類型參與者的技術(shù)能力參差,還需要開(kāi)展海量的數(shù)據(jù)治理、數(shù)據(jù)清洗等工作;各機(jī)構(gòu)單打獨(dú)斗式的私有云訓(xùn)練也造成算力浪費(fèi),各種成本高昂,中小金融機(jī)構(gòu)無(wú)法承受。

國(guó)盛證券曾估算,GPT-3訓(xùn)練一次的成本約為140萬(wàn)美元,對(duì)于一些更大的LLM模型,訓(xùn)練成本介于200萬(wàn)美元至1200萬(wàn)美元之間。

03 共建

面對(duì)金融大模型的落地困境,業(yè)內(nèi)明顯的趨勢(shì)是,越來(lái)越多的機(jī)構(gòu)擁抱合作互通,通過(guò)生態(tài)共建來(lái)實(shí)現(xiàn)共贏。

證監(jiān)會(huì)科技監(jiān)管局局長(zhǎng)姚前就曾刊文指出,大模型需要巨大的算力支持和嚴(yán)格的數(shù)據(jù)治理,普通的機(jī)構(gòu)和應(yīng)用部門(mén)往往難以支撐大模型的運(yùn)行以及迭代升級(jí)工作。為此,需要建立一個(gè)各類模型健康交互和協(xié)同進(jìn)化的生態(tài),以保證大模型相關(guān)人工智能產(chǎn)業(yè)可以在各個(gè)應(yīng)用領(lǐng)域成功落地。

我們也看到市場(chǎng)上金融大模型的各類參與者,通過(guò)加強(qiáng)合作共同探索大模型的成功落地。

“模型”之戰(zhàn),標(biāo)準(zhǔn)先行,騰訊云就積極牽頭制訂標(biāo)準(zhǔn)規(guī)范。早在7月份,其與中國(guó)信通院共同啟動(dòng)了行業(yè)大模型標(biāo)準(zhǔn)聯(lián)合推進(jìn)計(jì)劃,聯(lián)合牽頭中國(guó)首個(gè)金融行業(yè)大模型標(biāo)準(zhǔn)的編制工作。

11月30日,IEEE金融風(fēng)控大模型標(biāo)準(zhǔn)啟動(dòng)會(huì)召開(kāi)。而該標(biāo)準(zhǔn)是由騰訊主導(dǎo)發(fā)起,是全球范圍內(nèi)首個(gè)金融風(fēng)險(xiǎn)控制領(lǐng)域的大模型國(guó)際標(biāo)準(zhǔn)。會(huì)議在國(guó)際權(quán)威標(biāo)準(zhǔn)組織IEEE指導(dǎo)下舉行,中國(guó)信通院等學(xué)術(shù)機(jī)構(gòu),以及微眾銀行、馬上消金、度小滿、中原消金等機(jī)構(gòu)出席,聯(lián)合參與標(biāo)準(zhǔn)制定。

此外,金融機(jī)構(gòu)與頭部大模型廠商的“強(qiáng)強(qiáng)聯(lián)合”也在加速。

8月,交通銀行與華為、騰訊云、科大訊飛宣布共建3個(gè)聯(lián)合創(chuàng)新實(shí)驗(yàn)室;9月,浙商銀行與華為簽署深化戰(zhàn)略合作協(xié)議,將在綜合金融服務(wù)、AIGC場(chǎng)景應(yīng)用等方面深入合作,實(shí)現(xiàn)資源共享、優(yōu)勢(shì)互補(bǔ)、互利共贏的新格局;11月,騰訊云發(fā)布金融行業(yè)大模型解決方案,首批已有中國(guó)銀聯(lián)及11家合作伙伴宣布參與騰訊金融大模型的生態(tài)共建。

對(duì)大部分中小金融機(jī)構(gòu)們以及金融科技公司來(lái)說(shuō),更理想的路徑是,引入第三方廠商領(lǐng)先的基礎(chǔ)大模型,在自身樣本基礎(chǔ)上微調(diào),構(gòu)建出自己專業(yè)的大模型,快速賦能業(yè)務(wù)流程,力爭(zhēng)在這場(chǎng)模型之戰(zhàn)中實(shí)現(xiàn)彎道超車。

度小滿CTO許冬亮認(rèn)為,行業(yè)大模型將幫助積極擁抱大模型的中小金融機(jī)構(gòu),縮小與頭部機(jī)構(gòu)的技術(shù)差距,“大家重新站在同一起跑線上,這是中小機(jī)構(gòu)跨越‘?dāng)?shù)字鴻溝’和‘智能化鴻溝’的機(jī)遇”。

騰訊云方面的數(shù)據(jù)顯示,東風(fēng)日產(chǎn)融資租賃借助騰訊云的風(fēng)控大模型,在只有較少樣本的情況下就完成了定制化的風(fēng)控建模,建模時(shí)間節(jié)省了70%,讓最底層的風(fēng)控模型上具備了堅(jiān)實(shí)的風(fēng)控免疫力,支持金融業(yè)務(wù)開(kāi)展。

新浪數(shù)科方面,也在積極探索利用通用模型結(jié)合金融領(lǐng)域代碼庫(kù)來(lái)私有化部署的代碼輔助工具,以進(jìn)一步提升性能和信息安全。

Gartner最新發(fā)布的《2024年10大戰(zhàn)略技術(shù)趨勢(shì)》預(yù)測(cè):到 2026年超過(guò)80%的企業(yè)將使用生成式人工智能的API或模型,或在生產(chǎn)環(huán)境中部署支持生成式人工智能的應(yīng)用,而在2023年初這一比例不到5%。

相信在不久的將來(lái),伴隨金融大模型參與者的共同努力和國(guó)家政策扶持,大模型落地的“藩籬”將被跨越,在多個(gè)核心業(yè)務(wù)端落地開(kāi)花,并釋放指數(shù)級(jí)生產(chǎn)潛力,全面重構(gòu)金融商業(yè)模式。

本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人。
主站蜘蛛池模板: 龙州县| 淳安县| 镇安县| 格尔木市| 无锡市| 佛山市| 西宁市| 黔东| 肥乡县| 苍山县| 上栗县| 荥阳市| 邹城市| 康定县| 饶平县| 慈利县| 沂水县| 靖江市| 长治市| 唐海县| 靖州| 宁强县| 甘洛县| 岳阳县| 福安市| 西丰县| 玉田县| 英德市| 天台县| 肥乡县| 云梦县| 景德镇市| 鄂托克前旗| 林甸县| 东乌| 大足县| 黎川县| 镇宁| 井冈山市| 延庆县| 中方县|